Lesson 19. Degeneracy, Convergence, Multiple Optimal Solutions

0 Warm up

Example 1. Suppose we are using the simplex method to solve the following canonical form LP:

maximize
$$10x + 3y$$

subject to $x + y + s_1 = 4$ (1)
 $5x + 2y + s_2 = 11$ (2)
 $y + s_3 = 4$ (3)
 $x \ge 0$ (4)
 $y \ge 0$ (5)
 $s_1 \ge 0$ (6)
 $s_2 \ge 0$ (7)
 $s_3 \ge 0$ (8)

Let $\mathbf{x} = (x, y, s_1, s_2, s_3)$. Our current BFS is $\mathbf{x}^t = (0, 4, 0, 3, 0)$ with basis $\mathcal{B}^t = \{y, s_1, s_2\}$. The simplex directions are $\mathbf{d}^x = (1, 0, -1, -5, 0)$ and $\mathbf{d}^{s_3} = (0, -1, 1, 2, 1)$. Compute \mathbf{x}^{t+1} and \mathcal{B}^{t+1} .

• In the above example, the step size $\lambda_{max} = 0$

• As a result, $\mathbf{x}^{t+1} = \mathbf{x}^t$: it looks like our solution didn't change!

• The basis did change, however: $\mathcal{B}^{t+1} \neq \mathcal{B}^t$

• Why did this happen?

1 Degeneracy

- A BFS \mathbf{x} of an LP with n decision variables is **degenerate** if there are more than n constraints active at \mathbf{x}
 - \circ i.e. there are multiple collections of *n* linearly independent constraints that define the same **x**

cample 2. Is \mathbf{x}^t	in Example 1 degenerate? Why?
In $\mathbf{x}^t = (0, 4,$	0, 3, 0) in Example 1, "too many" of the nonnegativity constraints are active
	ult, some of the basic variables are equal to zero
	of a canonical form LP with n decision variables and m equality constraints has
Recail, a DF5	of a canonical form Er with n decision variables and m equality constraints has
0	basic variables, potentially zero or nonzero
0	nonbasic variables, always equal to 0
Suppose x is	a degenerate BFS, with $n + k$ active constraints $(k \ge 1)$
Then	nonnegativity bounds must be active, which is larger than $n - m$
Thomasona, a I	BFS x of a canonical form LP is degenerate if
mererore: a r	ors x of a canonical form Lr is degenerate if
As a result, a	degenerate BFS may correspond to several bases
110 a 100a1t, a	degenerate B16 may correspond to several bases
。 e.g. in F	Example 1, the BFS (0, 4, 0, 3, 0) has bases:
Every step of	the simplex method
/ o p or	· · · · · · · · · · · · · · · · · · ·

- o does not necessarily move to a geometrically adjacent extreme point
- o does move to an adjacent BFS (in particular, the bases differ by exactly 1 variable)
- At a degenerate BFS, the simplex method might "get stuck" for a few steps
 - o Same BFS, different bases, different simplex directions
 - \circ Zero-length moves: $\lambda_{max} = 0$
- When $\lambda_{\text{max}} = 0$, just proceed as usual
- Simplex computations will normally escape a sequence of zero-length moves and move away from the current BFS

2 Convergence

- In extreme cases, degeneracy can cause the simplex method to cycle over a set of bases that all represent the same extreme point
 - o See Rader p. 291 for an example
- Can we guarantee that the simplex method terminates?
- Yes! Anticycling rules exist
- Easy anticycling rule: Bland's rule
 - $\circ~$ Fix an ordering of the decision variables and rename them so that they have a common index

$$\diamond$$
 e.g. $(x, y, s_1, s_2, s_3) \rightarrow (x_1, x_2, x_3, x_4, x_5)$

- Entering variable: choose nonbasic variable with <u>smallest index</u> among those corresponding to improving simplex directions
- \circ Leaving variable: choose basic variable with smallest index among those that define λ_{max}

Multiple optimal solutions

- Suppose our current BFS is \mathbf{x}^t , and y is the entering variable
- The change in objective function value from \mathbf{x}^t to $\mathbf{x}^t + \lambda \mathbf{d}^y$ ($\lambda \ge 0$) is

- ⇒ We can use reduced costs to compute changes in objective function
- Suppose we solve a canonical form maximization LP with decision variables $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$ using the simplex method, and end up with:

 $\mathbf{x}^t = (0, 150, 0, 200, 50)$ $\mathbf{d}^{x_1} = \left(1, -\frac{1}{2}, 0, -\frac{3}{2}, -\frac{1}{2}\right)$

 $\mathcal{B}^t = \{x_2, x_4, x_5\}$ $\mathbf{d}^{x_3} = \left(0, -\frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}\right)$ $\bar{c}_{x_3} = -25$

• Is \mathbf{x}^t optimal?

• Are there multiple optimal solutions?

• Because the reduced cost $\bar{c}_{x_1} = 0$,

• Let's explore using x_1 as an entering variable:

- In general, if there is a reduced cost equal to 0 at an optimal solution, there may be other optimal solutions
 - The zero reduced cost must correspond to a simplex direction with $\lambda_{max} > 0$